Epidemiology of Cirrhosis in the United States

Rohit Loomba, MD, MHSc
Assistant Professor of Medicine, Division of Gastroenterology and Assistant Adjunct Professor, Division of Epidemiology
University of California at San Diego

Content

- Introduction
- Define: Cirrhosis
- Burden of liver disease
- Clinical diagnosis
- Risk prediction
- Classification: Baveno V
- Reversibility of cirrhosis
- Trends in transplantation
Cirrhosis: Definition

- Cirrhosis represents a late stage of progressive hepatic fibrosis characterized by distortion of the hepatic architecture and the formation of regenerative nodules.

Is there a change in cirrhosis related death rates?
Causes of death in the US: 2009

<table>
<thead>
<tr>
<th>Rank</th>
<th>Cause of death (Based on the Tenth Revision, International Classification of Diseases, Second Edition, 2004) and State</th>
<th>Number</th>
<th>Percent of total deaths</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Diseases of heart (I00-I09,I10,I11,I13,I20-I51)</td>
<td>2,437,163</td>
<td>100.0</td>
<td>703.8</td>
</tr>
<tr>
<td>2</td>
<td>Malignant neoplasms (C00-C97)</td>
<td>596,413</td>
<td>24.6</td>
<td>195.2</td>
</tr>
<tr>
<td>3</td>
<td>Chronic lower respiratory diseases (J40-J47)</td>
<td>567,628</td>
<td>23.3</td>
<td>184.9</td>
</tr>
<tr>
<td>4</td>
<td>Cerebrovascular diseases (I60-I69)</td>
<td>137,953</td>
<td>5.6</td>
<td>44.7</td>
</tr>
<tr>
<td>5</td>
<td>Accidents (unintentional injuries) (V01-X59,Y85-Y86)</td>
<td>128,842</td>
<td>5.3</td>
<td>42.0</td>
</tr>
<tr>
<td>6</td>
<td>Alzheimer's disease (G30)</td>
<td>118,021</td>
<td>4.8</td>
<td>38.4</td>
</tr>
<tr>
<td>7</td>
<td>Diabetes mellitus (E10-E14)</td>
<td>79,003</td>
<td>3.2</td>
<td>25.7</td>
</tr>
<tr>
<td>8</td>
<td>Influenza and pneumonia (J09-J18)</td>
<td>68,795</td>
<td>2.8</td>
<td>22.4</td>
</tr>
<tr>
<td>9</td>
<td>Nephritis, nephrotic syndrome and nephrosis (N00-N07,N17-N19,N25-N27)</td>
<td>53,692</td>
<td>2.2</td>
<td>17.5</td>
</tr>
<tr>
<td>10</td>
<td>Intentional self-harm (suicide) (*U03,X60-X84,Y87.0)</td>
<td>48,835</td>
<td>2.0</td>
<td>15.9</td>
</tr>
<tr>
<td>11</td>
<td>Septicemia (A40-A41)</td>
<td>39,809</td>
<td>1.5</td>
<td>12.0</td>
</tr>
<tr>
<td>12</td>
<td>Chronic liver disease and cirrhosis (K70,K73-K74)</td>
<td>30,568</td>
<td>1.3</td>
<td>10.0</td>
</tr>
</tbody>
</table>

Death rate up by 3%
Overall dropping down from 11 to 12 as cause of death

NCHS/CDC/2009 data

Is there a difference in cirrhosis-related death rates within United States?
Geographic variability in cirrhosis deaths

1. New Mexico: 2.4% (18.4 per 100000) – 9th
2. California: 1.8% (11.6 per 100000) – 9th
3. Oregon: 1.6% (13.3 per 100000) – 9th
4. Washington: 1.6% (11.3 per 100000) – 9th
5. Texas: 1.7% (11.3 per 100000) – 11th

US rate is 1.3%

NCHS/CDC/2009 data

Major trends in liver-related death rates
Death rates due to hepatitis C

Death rates due to hepatitis B

Everhart et al. Gastro 2009
Trends in HBV-associated liver transplants in the US

Rising incidence of HCC

Everhart et al. Gastro 2009
How good are we in diagnosing cirrhosis clinically?

Increase the likelihood of diagnosing cirrhosis

<table>
<thead>
<tr>
<th>Clinical finding/parameter</th>
<th>Likelihood of cirrhosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascites</td>
<td>LR, 7.2 (95% CI, 2.9-12)</td>
</tr>
<tr>
<td>Platelet count <160K/μL</td>
<td>LR, 6.3 (95% CI, 4.3-8.3)</td>
</tr>
<tr>
<td>Spider nevi</td>
<td>LR, 4.3 (95% CI 2.4-6.2)</td>
</tr>
</tbody>
</table>

Udel et al. JAMA. 2012;307(8):832-842
Lab parameters help rule in or out cirrhosis

Three most reliable predictors for excluding cirrhosis

- **Lok index <0.2 (Plts, AST/ALT, INR)**
- **Platelet count ≥ 160 K**
- **Absence of hepatomegaly**

The overall impression of the clinician was not as informative as the individual findings or laboratory combinations.
Are all cirrhotics equal?

Natural history of compensated cirrhosis

213 compensated patients

- 10 patients died
- 12 patients transplanted
- 129 patients alive

62 decompensated patients
- 46 (74%) ascites
- 6 (10%) varical bleeding
- 17 (27%) hepatic encephalopathy

Ripoll et al. Gastro 2007
Can we predict who is at risk of decompensation?

MELD and risk of decompensation

MELD <10	At risk	154	145	129	116	91	71	26
Events	0	3	12	17	22	24	33	
MELD ≥ 10	At risk	54	46	41	36	30	22	9
Events	0	7	12	16	20	21	24	
HVPG and risk of decompensation

Emerging staging system of cirrhosis
Baveno V: Classification of cirrhosis

Can we reverse cirrhosis?
<table>
<thead>
<tr>
<th>Etiologies with longstanding proof of reversibility with treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Hemochromatosis (1970): Phlebotomy</td>
</tr>
<tr>
<td>• AIH (1986, 1997): Steroids</td>
</tr>
<tr>
<td>• PBC (1997): Ursodeoxycholic acid</td>
</tr>
<tr>
<td>• Alcoholic cirrhosis (1980): Abstinence</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hepatitis B cirrhosis: reversal with treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>• TDF treatment over 5 years led to reversal of cirrhosis in 74% of patients with cirrhosis at baseline</td>
</tr>
<tr>
<td>• Predictors of regression:</td>
</tr>
</tbody>
</table>
 – Lower BMI |
 – Absence of diabetes |

Afdhal et al. EASL 2012
HCV cirrhosis: Reversal with treatment

Overall impact, and changing tides
Leading indications for liver transplant

NASH would be leading indication of LT

Summary

- Cirrhosis remains an important cause of mortality
- Geographic variability
- Risk prediction is possible
- Baveno V classification
- HCC is rising
- Treatment can reverse cirrhosis
- Decline of HCV, and HBV cirrhosis due to improved treatment
- Exponential increase in NASH cirrhosis
Thank you

Pathologic classification of cirrhosis

- Micronodular
 - < 3 mm
 - Alcohol, hemochromatosis, cholestatic causes of cirrhosis, and hepatic venous outflow obstruction
- Macronodular
 - > 3 mm
 - Viral hepatits
- Mixed